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single-atlas ventricular segmentation method of (Carmichael, O.T., Thompson, P.
M., Dutton, R.A., Lu, A., Lee, S.E., Lee, J.Y., Kuller, L.H., Lopez, O.L., Aizenstein, H.J., Meltzer, C.C., Liu, Y., Toga, A.
W., Becker, J.T., 2006. Mapping ventricular changes related to dementia and mild cognitive impairment in a
large community-based cohort. IEEE ISBI. 315–318) by using multi-atlas segmentation, which has been
shown to lead to more accurate segmentations (Chou, Y., Leporé, N., de Zubicaray, G., Carmichael, O., Becker,
J., Toga, A., Thompson, P., 2008. Automated ventricular mapping with multi-atlas fluid image alignment
reveals genetic effects in Alzheimer's disease, NeuroImage 40(2): 615–630); with this method, we calculated
minimal numbers of subjects needed to detect correlations between clinical scores and ventricular maps. We
also assessed correlations between emerging CSF biomarkers of Alzheimer's disease pathology and
localizable deficits in the brain, in 80 AD, 80 mild cognitive impairment (MCI), and 80 healthy controls
from the Alzheimer's Disease Neuroimaging Initiative. Six expertly segmented images and their embedded
parametric mesh surfaces were fluidly registered to each brain; segmentations were averagedwithin subjects
to reduce errors. Surface-based statistical maps revealed powerful correlations between surface morphology
and 4 variables: (1) diagnosis, (2) depression severity, (3) cognitive function at baseline, and (4) future
cognitive decline over the following year. Cognitive function was assessed using the mini-mental state exam
(MMSE), global and sum-of-boxes clinical dementia rating (CDR) scores, at baseline and 1-year follow-up.
Lower CSF Aβ1–42 protein levels, a biomarker of AD pathology assessed in 138 of the 240 subjects, were
correlated with lateral ventricular expansion. Using false discovery rate (FDR) methods, 40 and 120 subjects,
respectively, were needed to discriminate AD and MCI from normal groups. 120 subjects were required to
detect correlations between ventricular enlargement and MMSE, global CDR, sum-of-boxes CDR and clinical
depression scores. Ventricular expansion maps correlate with pathological and cognitive measures in AD, and
may be useful in future imaging-based clinical trials.

Published by Elsevier Inc.
Introduction

Alzheimer's disease (AD) is the commonest type of dementia
(Kukull and Bowen, 2002). It is characterized by progressive
neuronal degeneration and cognitive decline, and affects ∼5–10% of
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those over age 65 and 30–40% of those over 90. Around 4.5 million
people in the United States have AD, with an estimated cost to
society of $100 billion per year, and up to 14 million people and their
families may be affected by AD by the middle of this century if no
new treatments are developed.

Diagnosis of possible or probable AD is based on clinical criteria and
by exclusion of other possible causes of dementia. With current
diagnostic criteria, AD-associated neuropathology is typically well-
advanced by the time AD is diagnosed. Much AD research focuses on
mild cognitive impairment (MCI), a transitional state between normal
www.manaraa.com
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1 In this paper we use expansion to denote ventricular volume or ventricular
morphology that is abnormally expanded relative to a control group average. It is not
intended to give the impression that we are measuring the rate of ventricular
enlargement using serial MRI scans, as this is a cross-sectional study.
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aging and early AD (Flicker et al., 1991), inwhich 6–25% of subjects per
year transition to AD (Petersen et al., 2001). As drug candidates that
might slow the progression of Alzheimer's pathology began to be
developed, the National Institute of Aging and pharmaceutical industry
funded the Alzheimer's Disease Neuroimaging Initiative, with the goal
of developing improved methods to track AD based on imaging and
other biomarkers, and to optimize methods for AD treatment trials.

MRI-based volume measurements are potential surrogates of
disease progression in AD, even in the pre-clinical stages (Kantarci
and Jack, 2004). Several methods can quantify structural brain changes
in MRI including: region-of-interest measurements, such as hippocam-
pal volumes and maps (Morra et al., 2008a,b), the “boundary shift
integral” — a technique that quantifies differences between two
successive co-registered 3D MRIs (Fox et al., 2001), and mapping
methods that localize atrophy, such as voxel-based morphometry
(Good et al., 2001; Whitwell et al., 2004), and tensor-based morpho-
metry (Studholme et al., 2004, 2006; Hua et al., 2008a,b; Leow et al., in
press). Even so, ventricular volume measures provide excellent
sensitivity to disease effects and pre-clinical brain changes (Schott et
al., 2005). In 79 healthy elderly subjects examined annually for up to 15
consecutive years, ventricular volumeexpansion acceleratedonaverage
2.3 years prior to the clinical diagnosis of MCI (Carlson et al., 2008).

Despite renewed interest in its value as a predictor of clinical
decline (Weiner, 2008), ventricular segmentation fell somewhat out
of favor as it is time-consuming and tedious to compute, often
requiring expert manual labeling of scans. Differences in inter-
observer delineation or drift over time make it hard to analyze large
numbers of subjects over longer time-spans. For the vast 3D MR
datasets now being collected (over 3000 scans in the ADNI), manual
segmentations would be impractical.

MRI-based volumetric studies of MCI and Alzheimer's disease are
now common, with much of the work focusing on medial temporal
structures such as the entorhinal cortex and hippocampus that
degenerate earliest (Stoub et al., 2005; Morra et al., 2008a,b). Recently,
cortical thickness analyses (Thompson et al., 2003; Lerch and Evans,
2005; Braskie et al., 2008) and tensor-based morphometry (TBM; Hua
et al., 2008a,b; Leowet al., in press; Raji et al., submitted for publication)
have given a more complete picture of pathological structural changes.

Focusing on the ventricles specifically, Ferrarini et al. (2007) used
an unsupervised clustering algorithm, generating a control average
surface and a cloud of corresponding nodes across a dataset, and
applied it to study ventricular shape variations in healthy elderly and
AD subjects (Ferrarini et al. 2006; 2008a). As in our study, they
correlated local ventricular enlargement with MMSE scores in 28
subjects with normal cognition, 26 individuals with MCI and 58
patients with severe AD (Ferrarini et al. 2008b), and with a machine
learning approach, they classified previously unseen AD subjects with
an accuracy of 76%. Carmichael et al. (2007a) suggested that at
baseline, normal subjects who subsequently developed dementia over
the course of 4 years had ventricular measures that differed from
those of other normal subjects. Also, they found associations between
ventricular volume and clinical conditions that are prevalent in the
elderly, such as hypertension, diabetes, and depression (Carmichael
et al., 2007b). In later work, Carmichael et al. (2007c) used a
multivariate model to analyze the rate of change in lateral ventricle-
to-brain ratio in 145 longitudinal pairs of MR images, accounting for
dementia status, age, sex, education, race, white matter lesions,
depression severity, baseline ventricular volume, and cardiovascular
risk factors. Taken together, these efforts suggest that ventricular
maps and volumes are useful for tracking AD and factors that
modulate AD progression. Nestor et al. (2008) used a region growing
method to segment the lateral ventricles and examined the cross-
sectional and longitudinal ventricular volume differences in a large
ADNI subset of 152 normal elderly controls, 247 MCI and 105 AD
subjects after sixmonths. The AD group had a significantly greater rate
of ventricular enlargement than both subjects with MCI and controls,
and the MCI group had a greater rate of enlargement than controls.
MCI subjects at baseline who progressed to clinical AD after six
months had greater ventricular enlargement than stable MCI subjects.
Ventricular enlargement was different between ApoE4 genotypes
within the AD group. The number of subjects required to demonstrate
a 20% change in ventricular enlargement was substantially lower than
that required to demonstrate a 20% improvement in cognitive scores.

In our study, we aimed to improve on the single-atlas ventricular
segmentation method of Carmichael et al. by using multi-atlas
segmentation, which can yield more accurate segmentations (Chou
et al., 2008); we also calculated minimal numbers of subjects needed
to detect correlations between clinical scores and ventricular maps.
We also assessed correlations between emerging CSF biomarkers of
AD pathology and localizable deficits in the brain.

To better understand ventricular correlates of AD progression, we
automatically mapped ventricular geometry to analyze disease-
related dilation in 80 AD patients, 80 individuals with MCI, and 80
healthy subjects. We automatically extracted surface-based 3D
anatomical models from the 240 MRI scans. We hypothesized that
(1) ventricular morphology would correlate with baseline and future
(1-year) change scores on the Mini-Mental State Exam and Clinical
Dementia Rating scale (both global and sum-of-boxes scores); and (2)
ventricular morphology at baseline would correlate with ApoE
genotype, educational level and depression severity, albeit with
lower effect sizes than the primary clinical correlates. Finally, as an
exploratory hypothesis, we expected that (3) ventricular dilation
would correlate with biomarkers of AD pathology including CSF levels
of tau protein (Tau), 181-phosphorylated tau protein (pTau181p), beta
amyloid (Aβ1–42), and ratios of Tau/Aβ1–42 and PTau/Aβ1–42 (Andrea-
sen et al. 2001; Itoh et al., 2001; Verbeek et al., 2003; Hampel et al.,
2004; Lee and Trojanowski, 2006).

For each correlation, we evaluated the statistical power of our
method by reducing the sample size to determine how many subjects
were sufficient to detect the correlation using voxel-based statistical
analyses, in conjunction with false discovery rate methods. The
overarching goal of this work is to discover which map-based
measures of disease burden can (1) best predict cognitive deteriora-
tion in normal, MCI and AD subjects, and (2) correlate best with CSF-
based measures of pathology, an alternative objective measure of
disease progression. It is not yet known whether differences on brain
MRI occur along with elevated pathology in the CSF, and whether the
two measures of disease are correlated. Following the intriguing pilot
data of Wahlund and Blennow (2003), we hypothesized that CSF
levels of beta amyloid (Aβ1–42), but not Tau-derived measures, would
be associated with ventricular expansion.1

Materials and methods

Subjects

The Alzheimer's Disease Neuroimaging Initiative (ADNI; Mueller
et al., 2005a,b; Jack et al., 2008; http://www.loni.ucla.edu/ADNI/) is a
large multi-center longitudinal MRI and FDG-PET (fluorodeoxyglu-
cose positron emission tomography) study of 800 adults, ages 55 to
90, including 200 elderly controls, 400 MCI subjects, and 200 AD
patients. The ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as a
5-year public–private partnership. The primary goal of ADNI has been
to test whether serial MRI, PET, other biological markers, and clinical
www.manaraa.com

http://www.loni.ucla.edu/ADNI/


Table 1
Demographic and clinical scores [mean (SD)] for all covariates examined.

N Males/females Age (years) MMSE Global CDR Sum-of-boxes CDR

Normal 80 40/40 75.49 (5.50) 29.13 (1.01) 0 (0) 0.01 (0.08)
MCI 80 40/40 76.30 (6.91) 26.94 (1.69)⁎ 0.50 (0)⁎ 1.46 (0.80)⁎
AD 80 40/40 75.79 (7.38) 23.09 (1.77)⁎ 0.73 (0.25)⁎ 4.28 (1.68)⁎

MMSE change Global CDR change Sum-of-boxes CDR change Years of education ApoE4(%)

Normal −0.06 (1.47) 0.01 (0.21) 0.07 (1.02) 15.65 (2.65) 28.75
MCI −0.74 (2.75) 0.03 (0.21) 0.67 (1.07)⁎ 15.56 (2.52) 47.5
AD −2.22 (4.42) ⁎ 0.21 (0.49)⁎ 1.28 (2.24)⁎ 14.96 (3.14) 70

⁎ pb0.05.
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and neuropsychological assessments acquired in a multi-site manner
mirroring enrollment methods used in clinical trials, can replicate
results from smaller single site studies measuring the progression of
MCI and early AD. Determination of sensitive and specific markers of
very early AD progression is intended to aid researchers and clinicians
to develop new treatments and monitor their effectiveness, as well as
lessen the time and cost of clinical trials.

At the time of writing this report, data collection for the ADNI
project was in progress. The 240 subjects in this study included 80
healthy, 80 individuals with MCI and 80 individuals with Alzheimer's
disease evaluated at baseline (longitudinal follow-up data collection is
now in progress). This subset of the ADNI baseline sample was
assembled to age-, gender, and education-match all of the three
groups (AD, MCI, and controls) as closely as possible (Table 1). As part
of a thorough clinical/cognitive assessment at the time of scan
acquisition, each subject's mini-mental state examination (MMSE)
score, and global and “sum-of-boxes” clinical dementia ratings
(Morris, 1993) were assessed. Global CDR scores are discrete values
of 0, 0.5, 1, 2, and 3, indicating no dementia, verymild, mild, moderate,
and severe dementia. The sum-of-boxes CDR scores run from 0 to 18 in
0.5 intervals, (0 is no dementia; 18, very severe dementia). All AD
patientsmet NINCDS/ADRDA criteria for probable AD (McKhann et al.,
1984) with anMMSE score between 20 and 26, a global CDR of 0.5 or 1,
and a sum-of-boxes CDR of 1.0–9.0. As such, these subjects would be
considered as having mild, but not severe, AD. Detailed exclusion
criteria, e.g., regarding concurrent use of psychoactive medications,
may be found in the ADNI protocol (Mueller et al., 2005a,b). Briefly,
subjects were excluded if they had any serious neurological disease
other than incipient AD, any history of brain lesions or head trauma, or
psychoactivemedication use (including antidepressants, neuroleptics,
chronic anxiolytics or sedative hypnotics, etc.). Table 1 summarizes
demographic and clinical measures for all covariates tested here,
including diagnosis (normal, MCI, AD), the mini-mental state exam
(MMSE) (Folstein et al., 1975), global clinical dementia rating (CDR)
(Morris, 1993), and sum-of-boxes CDR, change (over one year) in
MMSE, change in global CDR, change in sum-of-boxes CDR, the ApoE
genotype (which confers risk for AD), depression severity measured
using the Geriatric Depression Scale (GDS; Yesavage et al., 1982),
educational level (in years) and CSF biomarkers (detailed below).
Fig. 1. CSF levels of Tau, Aβ1–42, pTau181p and ratios of Tau/Aβ1–42, pTau181p/Aβ1–42 in the
differences between groups (ADNMCINnormal) for the pTau181p and pTau181p/Aβ1–42 measu
Tau, Aβ1–42 and ratios of Tau/Aβ1–42.
This datasetwas downloaded by April 1, 2007, and reflects the status
of thedatabase at that point; asdata collection is ongoing,we focused on
analyzing all available baseline scans, together with baseline and 1-year
follow-up clinical and cognitive scores, as well as information on
conversion from MCI to AD over the 1-year follow-up period.

Inaddition, several biomarkers obtained fromCSFwere also included
for assessing correlations, including beta amyloid 1–42 (Aβ1–42), tau
protein (Tau), phosphorylated tau protein 181 (pTau181p), the tau and
Aβ1–42 ratio (Tau/Aβ1–42), and pTau Aβ1–42 ratio (pTau181p/Aβ1–42).
Biomarkermeasurements were performed by Drs. Leslie Shawand John
Trojanowski of the ADNI Biomarker Core at the University of
Pennsylvania School of Medicine, which collects and banks biological
samples (DNA, blood, urine and CSF) from all participating sites, and
conducts studies of selected AD biomarkers, including apolipoprotein E
(ApoE) genotype, isoprostanes, tau, Abeta, sulphatides and homocys-
teine levels (Shaw et al., 2007). CSF biomarker testing was performed
using the INNO-BIA AlzBio3 assay (Innogenetics, Ghent, Belgium), a
procedure designed for research use only, not for use in diagnostic
procedures. Fig.1 shows summary statistics for the biomarker profiles of
the AD, MCI and normal study groups. Biomarker data was assessed in
138 of the 240 subjects (49 normal, 42 MCI, and 47 AD).

CSF is in direct contact with brain and thus reflects brain-
associated biochemical events better than any other biological fluid.
CSF Aβ1–42, Tau and pTau181p are linked to AD-associated neuropatho-
logical changes, and they have been the most widely studied potential
biomarkers for AD. It has been found that CSF Aβ1–42 levels are
consistently lower in AD (Motter et al. 1995), and can distinguish
patients with mild AD from healthy controls with reasonable accuracy
(Blennow and Hampel 2003).

Image acquisition and pre-processing

High-resolution T1-weighted MRI scans were acquired on
1.5 Tesla MRI scanners from Siemens and General Electric Health-
care with the standard ADNI MRI protocol (Jack et al., 2008). (ADNI
also collects a smaller subset of data at 3 Tesla but it was not analyzed
here to avoid the additional complications of combining data across
scanner field strengths). Each subject was scanned with a sagittal 3D
MP-RAGE sequence, with acquisition parameters: inversion time (TI)/
www.manaraa.com
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Fig. 2. Methods flowchart. (a) Multiple surface meshes are mapped into new subjects' scans via fluid registration. N images (subsequently called atlases) were randomly selected
from the sample and the lateral ventricles weremanually traced and converted into surface mesh models. N new ventricular models were then produced by fluid registration of each
image to a different atlas. The N surface meshes per subject were integrated by simple mesh averaging for each individual subject (see Chou et al., 2008, for details). (b)Medial curves
(red) are extracted, and the radial distance of each ventricular boundary point to a medial curve may be interpreted as a local thickness. These distance measures are then averaged
across subjects at each boundary point and plotted in color to produce a regional measure of radial expansion or contraction of the ventricles. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3.Mean ventricular volumes in the control, MCI, and AD groups. As expected, there
is greater ventricular expansion in MCI than controls, and greater expansion in AD than
MCI and controls. There is also a well known ventricular asymmetry (left larger than
right) in all groups (Grossman et al., 1990). Error bars denote standard deviations.
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repetition time (TR): 1000/2400 ms; flip angle: 8°; 24 cm field of
view; 192×192×166 acquisition matrix, and a voxel size of 1.25×
Fig. 4. Significancemaps for correlations between local ventricular enlargement and (1) diagn
CDR, and sum-of-boxes CDR); (3) ApoE genotype, (4) educational level and (5) clinical depre
these maps respectively. One MCI subject was missing data on educational level, so they w
1.25×1.2 mm3. In plane, zero-filled reconstruction yielded a 256×256
matrix for a reconstructed voxel size of 0.9375×0.9375×1.2 mm3.
Images were calibrated with phantom-based geometric corrections to
ensure consistencyamong scans acquired at different sites (Gunter et al.,
2006). Additional image corrections were also applied, to adjust for
scanner- and session-specific calibration errors (detailed in Jack et al.,
2008). In addition to theoriginaluncorrected imagefiles, imageswith all
of these corrections already applied (GradWarp, B1, phantom scaling,
and N3) are available to the general scientific community (at www.loni.
ucla.edu/ADNI).

To adjust for global differences in brain positioning and scale, we
spatially normalized all images to the ICBM-53 average brain template
with a 9-parameter linear transformation using theMinctracc algorithm
(Collins et al., 1994). Aligned images were re-sampled in an isotropic
space of 2203 voxels with a final voxel size of 1 mm3. To equalize image
intensities across subjects, registered scans were histogram-matched.

Semi-automated lateral ventricle segmentation and shape modeling

Lateral ventricular volumes were semi-automatically estimated
for all scans using a “multi-atlas” technique we recently validated
www.manaraa.com
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ssion scores. Figs. 5 and 6 show the corrected significance and correlation coefficients of
ere excluded from the maps assessing that covariate.

http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI


399Y.-Y. Chou et al. / NeuroImage 46 (2009) 394–410
(Chou et al., 2008). Fig. 2(a) shows the steps used to map multiple
surface-based atlases into each scan via fluid registration, before
combining multiple segmentations of the same scan into a single
average surface mesh. Briefly, a small subgroup of 6 images (2 AD, 2
MCI and 2 normal) were randomly chosen and the lateral ventricles
were manually traced in contiguous coronal brain sections, following
previously described criteria with established inter- and intra-rater
reliability (Narr et al., 2001). Lateral ventricular surface models were
converted into parametric meshes (we refer to these labeled images
as ‘atlases’) (Thompson et al., 1996). We fluidly registered each atlas
and the embedded mesh models to all other subjects, treating the
deforming image as a Navier–Stokes viscous fluid (as pioneered by
Christensen et al., 1996, and Gramkow, 1996), guaranteeing a
diffeomorphic mapping. Fluid transforms were applied to the
manually traced ventricular boundary using tri-linear interpolation,
generating a propagated contour on the unlabeled images. Sets of
points representing the tissue boundaries were re-sampled and
made spatially uniform by stretching a regular rectangular grid
(100×150 surface points) over each surface. This scheme provides a
means for converting dense systems of points, sampled during
outlining, into fully parametric surfaces and allows homologous
points from the ventricular surfaces could be matched between
subjects. The scheme we used (detailed in Thompson et al., 2004a,b)
involves cutting the ventricles into 3 pieces (superior, temporal and
occipital horns), as the branching structure of the ventricles makes it
difficult to map the entire structure onto a single 2D domain. As such,
the first coronal section in which the superior and temporal horns
appear is used as a boundary between the 3 parts of the structure.
We are also investigating other methods for parameterizing the
ventricles, that do not involve making a planar cut between the 3
anatomically named horns. In Wang et al. (2009a), we use a
holomorphic flow method, which can create parameterizations of
complex branching objects such that the induced parametric
coordinates are also smooth (differentiable) at the junctions between
the horns. This differentiability can be useful if tensor-based
morphometry is being performed in surface coordinates (as in
Wang et al., 2009b), which we do not do here, as we are examining
radial expansion. For each surface model, a medial curve was defined
as the 3D curve traced out by the centroid of the ventricular boundary.
The medial curve was defined separately in each individual, before
averaging the surfaces. The operations of averaging surfaces and
Fig. 5. Cumulative Distribution Functions (CDFs) of significance maps associating ventricula
control and MCI vs. control contrast are significant, as is the link between ventricular dilation
This type of plot means that all covariates examined, apart from educational level and th
suprathreshold area in the correlation maps was higher than would be expected by chance (
some cases). (For interpretation of the references to colour in this figure legend, the reader
defining the medial curve from a surface are not commutative, as a
medial curve derived from an average surface would not be the same
as the average of the medial curves derived from each individual.
Because we wanted to measure radial ventricular expansion in each
individual, we computed these measures in each subject with
reference to their ownmedial curve, but plotted the resulting statistics
on the average surface for the groups being compared (Fig. 2(b)).

By integrating multiple propagated labels, random digitization
errors from each hand-traced segmentation are significantly reduced.
The resulting averagemodel is also robust to inaccuracies in individual
registrations that may occur when non-global minima of the
intensity-based cost function are reached.

The key-time saving step in our approach is based on embedding
the mesh models from the 6 randomly picked images into all the
remaining scans. This has several benefits: (1) it avoids bias associated
with just tracing one model and deforming it onto the other scans; (2)
it is automated, after the initial tracing of a few scans whose labels are
propagated into all the others; (3) it improves segmentation accuracy
and the power to detect disease effects by combining multiple
estimates for each scan (Chou et al., 2008); and (4) it superimposes
the same mesh geometry and surface-based grid structure on the
anatomy of many subjects, so that operations such as averaging and
population statistics can be computed.

Our method is best described as “semi-automatic” because a small
number of expert segmentations are required for the method to work,
but there is no added manual effort per scan once these few expertly
segmented images have been created. This is comparable to some
segmentation approaches based on machine learning (e.g. Morra
et al., 2008a,b) that require an expert user to delineate a small training
set of images before a large number of others are automatically
segmented with no further manual interaction.

Ventricular statistical maps and analysis

Surface contractions and expansions were statistically compared
between groups at equivalent locations using Student's t-tests (2-
tailed), and were correlated with different clinical characteristics
including diagnosis, cognitive scores, ApoE genotype, clinical scores,
and future decline, as well as CSF biomarkers including levels of tau
protein (Tau), 181-phosphorylated tau protein (pTau181p), beta amyloid
(Aβ1–42), and ratios of Tau/Aβ1–42 and pTau/Aβ1–42. The associated p-
www.manaraa.com
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red line) for all statistical thresholds ranging from 0 to 0.05 (and even as high as 0.7 in
is referred to the web version of this article.)
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values describing the uncorrected significance of these statistics were
plotted onto the average surface model, as a color-coded map.

To assess the power of our method to establish linkages between
morphology and different disease measures, we created cumulative
distribution function (CDF) plots of the p-values. For purposes of
clarification, we note that in using a CDF, this is not exactly the same
as the CDF that most statisticians use; the p-values are not
independent realizations of a random variable over many trials, but
come from different ventricular surface locations in the same imaging
dataset. We used the false discovery rate (FDR) method (Benjamini
and Hochberg, 1995) to assign overall significance values to each
statistical map, based on the expected proportions of voxels with
intensity above the threshold under the null hypothesis. The value for
which the CDF plot intersects with the y=20x line represents the
highest value for which at most 5% false positives are expected in the
map. The use of the y=20x line is related to the fact that significance
is declared when the volume of suprathreshold statistics is more than
20 times that which would be expected to be observed by chance in
null data. This intersection point is called the q-value. The q-value
Fig. 6. Correlation coefficients (r-maps) and proportion of variance explained (r2) for the 3 d
size and diagnosis, as well as with cognitive and clinical scores. The correlations in the MM
degeneration (opposite to all the other ones). It is of interest that the correlations with the M
the sum-of-boxes CDR scores. A correlation with an absolute value of around 0.2–0.3 for MM
ventricular enlargement. It is likely that atrophy (and the resulting ventricular enlargement
moderate to weak correlation, but is highly significant in a sample of this size. These maps ar
shown for the other covariates. (For interpretation of the references to colour in this figure
gives a single overall measure of significance for each p-map. If there
is no such intersection point (other than the origin), there is no
evidence to reject the null hypothesis. Our empirical CDF of p-values is
the flip of themore common FDR PP plot.We have used this procedure
to study statistical maps in several prior papers (Morra et al., 2008b;
Hua et al., 2008a).

Results

Overall ventricular volumes

Fig. 3 shows the pattern of mean ventricular volumes in the AD,
MCI and control groups, and is largely in line with prior studies. On
averageMCI volumeswere 10.59% higher than the control averages for
the left ventricles (p=0.00012, t-test) and 10.08% higher than the
control averages for the right ventricles (p=0.00028). The AD group's
ventricles were 16.18% larger than controls on the left (pb0.0001) and
17.82% larger than controls on the right (pb0.0001). When the MCI
and AD groups were directly compared with each other, the left
www.manaraa.com

iagnostic comparisons, showing the strength of association between radial ventricular
SE map are negative (red colors) because a higher MMSE score is associated with less
MSE scores, across the full sample, are higher than those with the CDR ratings, including
SE suggests that around 10% of the variation in the MMSE scores is accounted for by the
) caused cognitive decline, hence changes in MMSE score. This would be regarded as a
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Fig. 7. Significance maps revealing the profile of correlations between local ventricular enlargement and CSF biomarkers, including levels of Aβ1–42, pTau181p, Tau, and ratios of Tau/
Aβ1–42 and pTau/Aβ1–42. Fig. 8 shows the corrected significance of these maps.
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ventricle showed a trend for being larger in AD (p=0.069), and the
right ventricle was significantly larger in AD than MCI (p=0.018).

Linking ventricular morphology and clinical characteristics

Fig. 4 shows p-maps for each pairwise diagnostic comparison (AD/
MCI/normal), and correlations between ventricular morphology and
MMSE scores, global CDR, sum-of-boxes CDR scores, ApoE genotype
(coded as 1 for the presence of an E4 allele; 0 otherwise), educational
level and clinical depression severity, as covariates. The degree of
ventricular expansion was strongly associated with diagnosis (with
Fig. 8. Corrected significance for correlation between lateral ventricular expansion with CSF
with the morphometric differences.
greatest effects for the AD vs. normal comparison), MMSE scores and
clinical depression scores. The overall significance of these mapping
results was confirmed by FDR analysis (Fig. 5), and the Correlation
coefficients (r-maps) are shown in Fig. 6.

Correlations of ventricular morphology and CSF biomarkers

We investigated whether these cross-sectional measures of lateral
ventricular expansion were correlated with the levels of CSF bio-
markers. Our results in Fig. 7 indicated that higher CSF Aβ1–42 was
associated with ventricular expansion and the levels of pTau181p, and
www.manaraa.com
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Fig. 9. Significance maps correlate baseline ventricular shape with subsequent decline, over the following year, in 3 commonly used clinical scores.
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ratios of Tau/Aβ1–42 and pTau/Aβ1–42 were strongly associated with
right posterior horn expansion; an FDR analysis is shown in Fig. 8.

Predicting future cognitive change

One goal of ADNI is to determine which brain imaging measures
predict future clinical decline, primarily for drug trial “enrichment”, a
statistical strategy that empowers drug trials by selecting as
candidates those at highest estimated risk of imminent decline in
cognition. We correlated baseline ventricular morphology with
subsequent change over 1 year, in MMSE, global CDR and sum-of-
boxes CDR scores. Fig. 9 reveals regions where ventricular expansion
at baseline correlated with future outcomes; all maps were significant
overall after multiple comparisons correction with CDF-based FDR
(Fig. 10).

Minimal effective sample sizes

To determine how many subjects would suffice to detect
statistically significant correlations of ventricular enlargement with
diagnosis and with clinical test scores, we randomly threw out
subjects from our initial samples, yielding additional groups with
Fig.10. FDR analysis of correlations with future cognitive changes. Correlations were significa
CDR and sum-of-boxes scores. The baseline measures are therefore good predictors of futur
reduced sample sizes, N. These groups were chosen to preserve the
1:1:1 ratio among normal, MCI and AD sample sizes, while maintain-
ing the sex balance in all groups. As shown in Table 2, 40 and 120
subjects, respectively, were sufficient to discriminate AD andMCI from
normal groups. 120 subjects were required to correlate ventricular
enlargement with MMSE, global CDR, sum-of-boxes CDR scores and
depression severity. These results offer a guide to estimate sample
sizes with adequate power to detect group differences in future
studies using this method.

Non-parametric versus parametric testing
Given the distribution of radial measurements in the two groups,

we used a Student's t-test to compare the groups. Even so, we wanted
to assess whether the choice of a parametric test was justified, so we
re-ran the statistical maps using a non-parametric (permutation-
based) test at each voxel. This test does not assume that the radial
distances are normally distributed in each group. The statistical maps
and cumulative plot of p-values (see Fig. 11) were almost identical to
the results obtained using parametric statistics, and the q-value was
also almost identical (q=0.76 for the non-parametric test and
q=0.77 for the parametric test). These values indicate that whenever
the statistical threshold applied to the maps lies in the range 0 to 0.76
www.manaraa.com
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Table 2
Effects of varying the sample size.

Minimal N q-value for the
minimal N

q-value for the
full sample

AD vs. normal 40 0.09 0.75
MCI vs. normal 120 0.19 0.67
MMSE 120 0.37 0.72
Sum-of-boxes score 120 0.57 0.76
Global CDR score 120 0.48 0.77
Depression 120 0.10 0.38

The minimal sample size, N, and the corresponding q-value, based on using the full
available sample, for discriminating AD and MCI from normal subjects and for other
covariates (MMSE, global CDR, sum-of-boxes CDR and depression scores). Sample sizes
smaller than N are inadequate to detect the effect of interest, meaning that no FDR
threshold detects significant findings that control the false discovery rate at the
conventional 5% level. In these maps, higher q-values typically denote greater effect
sizes; if q is defined at all, then its value is the highest statistical threshold for which
the thresholded region is expected to control the false discovery rate at the
conventional 5% level.
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(or 0.77), then the false discovery rate (expected proportion of false
positives) in the thresholded region does not exceed the conventional
rate of 5%. This very high q-value occurs mainly because the two
groups (AD subjects and controls) differ substantially at almost every
point in the maps.

Predictive accuracy
Fig.12 shows howwell cognitive performance (on theMMSE) one-

year after baseline assessment could be predicted from (1) MMSE
scores at baseline, (2) MMSE scores plus ventricular volumes at
baseline, and (3) MMSE, ventricular volume, and CSF-derived
measures of the Aβ1–42 biomarker derived from lumbar puncture. As
seen in the least-squares regression lines, the prediction errors were
successively reduced as each more invasive measure was added. Even
so, it must be conceded that in moderate stages of amnestic MCI,
standardized cognitive tests may provide better predictive accuracy
than measures of whole brain, ventricular, entorhinal cortex, or
hippocampal volumes for assessing progression to Alzheimer disease
(Fleisher et al., 2008).

ROC curves
In Fig. 13, we compiled receiver operating characteristic (ROC)

curves for predicting clinical diagnosis based on ventricular volumes,
compared with other CSF biomarkers derived from lumbar puncture.
Using clinical diagnosis as a gold standard, these ROC plots show the
true positive rate versus the false positive rate (the two “operating
characteristics”) for each binary classifier, as its discrimination
threshold is varied. Ventricular volumes and CSF-derived biomarkers
performed about equally well in distinguishing MCI subjects from
Fig. 11. Comparison of parametric versus non-parametric tests. Here we show the p-values
panel) based on a non-parametric test. This test permutes the assignment of subjects to
statistics, rather than assuming that the underlying distributions are Gaussian. As the cumul
results for both the cumulative p-value plot and the q-value derived from the plot. The q-va
below the conventional 5% rate.
controls, but the CSF-derived biomarkers all outperformed ventricular
volumes in discriminating AD subjects from controls (see Fig. 13, right
panel). Each measure provides potentially independent predictive
power, so it may be possible in future to maximize the area under the
ROC curve even further by combining each of these features into a
single diagnostic classifier. If all domains render unique pieces of
information that are not collinear, then adding them should help the
diagnosis. Methods to combine these features into composite
classifiers include support vector machines and adaptive boosting
(Adaboost). Adaboost and SVM may be used together to adaptively
combine many weak classifiers to produce a strong classifier that
outperforms all of them (see Morra et al., 2009, for a review of these
methods). In all of these approaches, cross-validation is vital, to
determine how well brain-behavior relationships obtained from one
part of the data hold up in the remaining non-overlapping part.

Discussion

In this paper, we investigated the correlations between ventricular
morphology and baseline and future change in scores on the MMSE
and CDR scales, ApoE genotype, educational level and depression
severity, as well as CSF biomarkers. We measured ventricular
morphology using a multi-atlas fluid image alignment method—a
semi-automated mapping technique that uses a fluid deformation of
expertly segmented mesh models to derive morphological markers of
disease. Although the resulting ventricular maps give only a partial
indication of the atrophy occurring throughout the brain, such an
approach is easy to apply to large numbers of scans.

The study had 4 main findings. First, AD versus control groups as
well as MCI versus control groups were easily differentiated using
maps with sample sizes as low as 40 and 120 subjects, respectively.
Posterior regions of the ventricles tended to expand between
normalcy and MCI, while more frontal regions of the superior horns
tended to expand further between MCI and AD. This suggests that, as
with the cortex, there may be a topographic sequence of ventricular
expansionwith disease progression, rather than just an intensification
of expansion in the same regions. Second, ventricular expansion
correlated highly with MMSE, global CDR, and sum-of-boxes CDR
scores and with depression severity across the entire sample,
requiring only 120 subjects to detect these correlations, and confirm-
ing that the observed morphometric difference is linked with
cognition. The CDF plots suggested that, of all the clinical measures,
the sum-of-boxes CDR scores were the measures that were most
tightly associated with ventricular expansion. In CDF plots, the
associations with greatest effect sizes are those with the curves that
rise most rapidly and remain higher than those for other associations.
Third, lower CSF levels of the Aβ1–42 protein, a biomarker of AD
www.manaraa.com
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Fig. 12. Predicting later cognitive decline from baseline measures of MMSE, ventricular volumes and the Aβ1–42 biomarker using least-squares regression models. MMSE_12Mo,
MMSE_base, Vol and Aβ1–42 denoteMMSE scores after a one-year follow-up interval, the baselineMMSE score, ventricular volumes and Aβ1–42 protein levels, respectively. The values
shown in the legend represent themean square of the deviations of the data from the predictivemodels, showing that prediction errors were successively reduced (but only by about
5%) as each more invasive measure was added to the predictive model.
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pathology, were correlated with ventricular expansion. Fourth,
ventricular expansion at baseline strongly predicted future clinical
decline over the following year, whether the decline was measured
using 1-year changes in MMSE, global CDR or sum-of-boxes CDR.

Regarding biochemical markers, we found that Aβ1–42 levels
correlated with ventricular expansion maps in 138 subjects,
corroborating earlier work by Wahlund and Blennow (2003) on a
sample of 47 subjects with wide variations in cognitive impairment-
ranging from MCI to manifest AD. Wahlund and Blennow (2003)
found that lower Aβ1–42 was associated with lower overall brain
volumes (r=0.55; pb0.0001) and larger ventricular volumes (r=
−0.53; pb0.001). They also found, as we did, that Tau-derived
measures were not detectably correlated with baseline ventricular
morphology, suggesting that Aβ1–42 may be a better correlate of
disease burden as reflected on MRI. By examining CSF at baseline
and MRI at both baseline and 16 months follow-up, Wahlund and
Blennow (2003) also noted that significantly higher T-tau (r=0.47;
pb0.001) and pTau (r=0.41; p=0.005) levels were associated with
Fig. 13. ROC curves for regression models predicting clinical diagnosis (here treated as the go
of no discrimination (based on random guessing) is diagonal, and all the ROC curves lie abo
above the others represent the best classifiers. The area under the ROC curve represents the p
randomly chosen negative one. In this sample, all of the CSF-derived biomarkers discriminat
derived biomarkers perform about equally well in distinguishing MCI subjects from control
more marked progressive ventricular widening over time during the
follow-up interval, perhaps reflecting the intensity of the disease
process. This leads to the intriguing hypothesis that Taumeasuresmay
index active progression of the disease while Aβ1–42 may instead
reflect the cumulative disease burden at any given time. In support of
the Tau-derived measures, CSF pTau181p levels have been found to be
lower in cognitively healthy subjects who developed dementia after
three years follow-up versus thosewhodid not (Skoog et al. 2003). CSF
Tau has been consistently found to be increased in AD versus healthy
subjects (Jensen et al.,1995), whereas CSF levels of Aβ1–42 are reduced.
The association between AD and increased Tau levels has also been
corroborated in neuropathologically confirmed patients (Clark et al.
2003), and CSF tau has been established as one of the most promising
biomarkers for AD (Blennow and Hampel, 2003). In AD, as well as in
someother neurodegenerative diseases associatedwith Taupathology,
Tau is phosphorylated beyond the normal functional level (Avila,
2006). Elevated pTau181p levels have been found in MCI patients who
progress to AD (Arai et al. 2000) and pTau181p levels correlate with
www.manaraa.com
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points lost per year in MMSE (Buerger et al. 2002a,b). In advanced
stages of AD, clinical diagnosis is relatively accurate, so the relative
value of these invasive CSF samples is greater in normals and those
with MCI.

It is also important not to infer that Tau levels and measures of
structural brain atrophy are not correlated, even though our study of
240 subjects (with biomarker information available in 138 subjects)
did not detect any association. In one recent study, we related cortical
levels of plaque and tangles to cognitive variations in normal subjects,
and in those with MCI and AD, aiming to detect correlations between
pathology and atrophy (Braskie et al., 2008).

In that study, the cortical pathology, as quantified with a PET tracer
sensitive to AD pathology, was not correlated with cortical thickness
measures, which are also known to decline in MCI and AD (see
Thompson and Apostolova, 2007 for a review). Pathology and atrophy
may therefore vary most actively at slightly different times, or they
may only correlate in samples that include very advanced AD subjects.
Alternatively, there may be too much measurement error (including
registration error) for a true correlation to be detected in current
samples.

The very recently published study by Nestor et al. (2008) also
examines the ventricles in an ADNI dataset, but does not provide any
maps of the associations between ventricular morphology and clinical
correlates, and does not associate ventricular differences with serum
biomarkers, as we did here. Even so, some comparison between the
two studies is warranted. Nestor et al. (2008) used a region growing
method to segment the lateral ventricles and examined the cross-
sectional and longitudinal ventricular volume differences in a large
ADNI subset of 152 normal elderly controls, 247 MCI and 105 AD
subjects after six months. In line with our findings, they also found
that the AD group had greater ventricular enlargement at baseline
than the MCI group, and the MCI group had greater enlargement than
controls, although they did not providemaps of these effects as we did
in the current study. The mean ventricular expansion over six months
was 1.5%, 3.4% and 5.7% for control, MCI, and AD groups respectively in
the Nestor et al. study, which supports the notion that ventricular
measures may be useful for group discrimination even in very short
interval follow-up studies (e.g., 6 months). Nestor et al. also found that
the 18 of the 247 MCI subjects who progressed to AD in six months
had higher rates of ventricular expansion than the stableMCI subjects,
and the expansion rate for MCI group in aggregate exceeded that in
controls. We did not examine longitudinal changes in this study, but
the findings of Nestor et al. (2008) are consistent with our maps of
changes over time in the hippocampus in 490 ADNI subjects scanned
over a 1-year interval (Morra et al., 2008a,b). In that study, we found
the same rank ordering of the diagnostic groups with respect to mean
rates of longitudinal hippocampal atrophy over 1 year as did Nestor et
al. (2008) did for ventricular expansion over 6 months, i.e. MCI
converters showed greater changes than stable MCI subjects, and
controls showed least changes.

Using mapping approaches, it would make sense in the future to
determine exactly where on the ventricles these longitudinal changes
are taking place. If these changes discriminate MCI converters from
nonconverters, it would be useful to hone in on any specific areas of
the ventricles that are most discriminative, assuming that the changes
are not uniform across the ventricular surface, an assumption that is
suggested by our baseline mapping data here. This approach is
advocated by Ferrarini et al. (2008a,b), who used a machine learning
approach to distinguish AD patients from controls, using specific
subregions (termed “biomarker nodes”) on the ventricular surface to
give best group discrimination.

Mapping of morphological differences in the ventricles may
provide added benefit relative to simpler measures of ventricular
volume. One benefit of the 3D models is that they provide spatially
detailed maps of effects, and can be used to derive such measures as
radial thickness, which vary across the surface. The resulting maps can
implicate subregions that maximally discriminate groups for diag-
nostic classification. Ferrarini et al. (2008a,b) thresholded their
statistical maps and used the displacements in the remaining
subregions as features for a statistical classifier to differentiate AD
from controls. Their classifier was more accurate when a smaller
ventricular region was used for the classification, based on thresh-
olding the map more stringently. As such, maps can define anatomical
subregions to increase classification accuracy on unseen scans. Maps
may outperform statistics derived from regions of interest, especially
when the statistical effects are spatially concentrated. In one study of
the hippocampus (in 490 subjects; Morra et al., 2008a,b), where
changes over 1 year were diffuse, our 3D maps did not outperform
simple volumetric summaries in separating AD and MCI groups from
controls. In other studies, our maps sometimes found effects not
detectable with volumetric summaries (Nicolson et al., 2006). Finally,
some additional effort is required for making surface-based maps
versus computing simple volumetric summaries. When a large
database is examined automatically, this additional effort may pay
off. When effect sizes are expected to be very large, simple volumetric
assessments may be sufficient.

The correlation between ventricular expansion and depression is
of interest. In a prior study of 400 subjects from the Alzheimer's
Disease Neuroimaging Initiative (Morra et al., 2008b; 100 AD, 200MCI
and 100 controls; 395 had clinical depression ratings available), we
found that right but not left hippocampal atrophy was associated with
geriatric depression scores (p=0.004, corrected). This was largely
attributable to an association between depression severity and
atrophy of the hippocampal head, consistent with most earlier studies
(Bell-McGinty et al. 2002; Hickie et al. 2005; Lloyd et al. 2004;
Ballmaier et al., 2004, 2008) showing smaller hippocampal volumes in
elderly depressed patients compared to controls.

Because we detected correlations with hippocampal atrophy only
in the right hemisphere in a larger ADNI sample, consistent with
other reports that have shown differences as being more pro-
nounced for the right than for the left hemisphere (Bell-McGinty
et al., 2002), we were interested in whether ventricular expansion
was either lateralized (greater on the right) or if the correlation with
depression would be found in the left hemisphere only. In Fig. 4 (last
panel), it is clear that depression severity is correlated with
expansion all over the ventricular surface, suggesting that depres-
sion is correlated with atrophy in general but that there is less
power to detect it in the left hippocampus than in the left ventricle
(this would be inferred by considering the results of Morra et al.,
2008b and this paper together).

For practical application of any type of atlas-based segmentation, it
is beneficial to know whether it is better to propagate atlases that are
matched by age or diagnosis to the individuals whose anatomy is
being studied, or to reduce this bias by picking a range of labeled
atlases with varying geometries. Our recent studies examined a highly
related problem, i.e., in a group study, whether normalization of
images to a single individual's scan results in greater effect sizes, or
better labeling accuracy, compared with normalizing images to a
group-specific template (defined using appropriate deformation and
intensity-based metrics; Lepore et al., 2007), or an optimized
individual template (Chiang et al., 2006). In Chiang et al. (2006) we
found that greater effect sizes were obtainable in a morphometric
study of HIV/AIDS if data were aligned to a geometrically optimized
individual template (as in Kochunov et al., 2001) rather than aligning
data to a population-based average image, perhaps because features in
the individual template were more sharply defined and were not
blurred away by intensity averaging (especially at the cortex). Even so,
aligning data to any one individual atlas image risks a bias effect in
which images that more closely resemble the template may be more
accurately registered to it. They may lead to a “registration error by
group” interaction that may cause bias and inflate the probability of
false positive findings. To avoid this registration bias, in Lepore et al.
www.manaraa.com
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(2008), we found that a geometrically centered template, defined
using Lie group statistics on the deformation tensors, to have the
mean geometry for a group of subjects, gave marginally higher effect
sizes in an HIV morphometry study, relative to using an individual
template. They avoided statistical bias that might result from
randomly picking a template from a population.

When multiple atlases are used, as in this paper, this concern of
bias in alignment to the atlas (based on the particular geometry of the
atlas) is partially alleviated by deliberately using atlas templates from
multiple subjects. This reduces the concern that the new anatomies to
be labeledwill differ severely from the labeled template. Although this
is a theoretical argument, there is also empirical data supporting it.
We recently found (Chou et al., 2008) that the labeling accuracy for
individual structures was improved (i.e., the labeling error was
decreased) when multiple atlases are used for segmentation versus
a single atlas. If the choice of the atlas did not affect the registration
error, then it would not be possible to reduce this error by combining
multiple registrations. As the opposite is true, this has led to an
increase in popularity of multi-atlas approaches (Kochunov et al.,
2005, Twining et al., 2005, Chou et al., 2008), which can avoid the bias
in picking a single registration target.

In this study we note that multi-atlas segmentations tend to give
rise to higher effect sizes, and in Lepore et al. (2008) we noted that
using a geometrically centered template gave rise tomarginally higher
effect sizes in tensor-based morphometry. The question then arises as
to whether these higher effect sizes directly imply that the atlas is
“better”, in the sense of giving more accurate results, or avoiding
biases or confounds, or satisfying certain desirable axioms (e.g.,
avoiding possible “registration error×group” interactions). Clearly, an
atlas that gives better effect sizes does not automatically imply that
results are more accurate, for 3 reasons. First, we recently found that a
method that directly aligns geometrically centered group mean
templates, in tensor-based morphometry, gives better effect sizes for
detecting Alzheimer's disease than the standard approach, which
aligns all images to a common template (Hua et al., 2008a,b).
However, as we argued in Hua et al., (2008a,b), the former method is
invalid and incorrectly detects differences between two randomly
selected groups of controls when, by construction, no differences are
present. In other words, a method that detects higher effect sizes
should be tested on null data tomake sure that the false positive rate is
correctly controlled, and without that, higher effect sizes do not, in
themselves, entail greater accuracy. Second, a higher effect size may
provide good evidence for higher anatomical labeling accuracy, even if
it does not logically entail it, if some convincing reason can be found as
to why the error variance of the method is reduced. In the case of
multi-atlas registration, random errors in the manual tracing of the
ventricle surfaces are certainly reduced by averaging surface models
from several subjects, so this averaging step decreases a known source
of error. And, although it cannot be verified as there is no independent
data on the ground truth, it may also be that the average registration
error is less when using multiple templates to label anatomy than
when relying on a single atlas, which may not reflect the anatomy of
all subjects. Thirdly, there is a somewhat obscure situation in which
more accurate registration methods may in fact produce lesser effect
sizes when used for morphometry. Every morphometric method
based on nonlinear registration tends to pick up differences at a
certain scale, such as a few tens of voxels if deformation fields are very
smooth, or even at the voxel level if deformation fields have a very
high number of degrees of freedom. The scale at which effects are
detected depends on the level of smoothing, the weight on the
regularization term, or (in continuum-mechanical registration
approaches), the autocorrelation or Green's function of the elastic or
fluid operator governing the deformation. In a specific dataset, group
difference effects may be detectable with greatest effect sizes when
more smoothing of the registration field is used, while amore accurate
registration method, which labels anatomy more precisely, could
either fail to detect them or detect them with lesser effect sizes.
Increased labeling accuracy does not entail greater effect sizes. If, for
instance, the small-scale details of structures do not differ between
groups, but the larger-scale shape characteristics do differ, then a less
accurate registration method can (at least logically) provide a higher
effect size in detecting the group differences, as matching the small-
scale features may just add noise to the statistics on group differences.
As such, it seems fair to consider both the effect size and labeling
accuracy in choosing the best morphometric method, because the
scale at which greatest errors occur in the method may not match the
scale at which signals are present in the empirical data. We have been
studying this effect (Chou et al., 2009).

This paper has some limitations, some of which should be
addressable when the full ADNI sample is collected. First, of the 240
subjects in the study, only a limited number had CSF-based
assessments of the biochemical biomarkers (49 NC, 42 MCI, 47 AD).
While this is one of the first studies, to our knowledge, to correlate
ventricular structure with biochemical markers, and certainly the first
study to use maps to do so, this rather small subsample with
biochemical biomarkers may be a limiting factor in their utility here.
Second, this is a cross-sectional rather than longitudinal study, and the
dynamic relationship between cognition, biomarkers and ventricular
morphology may become clearer as follow-up data is collected.
Thirdly, our estimates of minimal sample sizes to detect group
differences or covariate effects are a little different than conventional
power estimates for a clinical trial. In a clinical trial, it is typical to
estimate, based on longitudinal data, the expected sample size
required to detect a 25% decrease in the rate of disease progression
(as quantified by the method), with 80 or 90% power. Using false
discovery rate curves, we are beginning to examine the minimal
sample sizes to detect a 25% slowing of disease progression;
longitudinal data are vital to answer this question definitively. If we
were measuring the rate of change in ventricular surfaces over time,
we could determine the power of this method to detect a 25% slowing
of the rate of change, over a one-year interval, for example.

Another limitation of this study, taken in isolation, is that it is
restricted to the ventricles, whereas a number of studies during the
past few years have investigated gray andwhitematter atrophy inMCI
and AD, and have also shown good predictions of clinical progression.
A caveat is also necessary regarding the interpretation that baseline
data predicts (or correlates with) future clinical decline. When we
correlated baseline ventricular morphology with subsequent change
over 1 year, in MMSE, global CDR and sum-of-boxes CDR scores, all
maps were highly significant. This is a useful observation, as it shows
that all regions of the ventricles, not just selective regions, have the
characteristic expansion that is predictive of future decline. Even so,
this correlation is to be expected, as subjects who are more impaired
are much more likely to have future cognitive decline than subjects
who are less impaired. In other words, cognitive impairment
measured by MMSE, global CDR or CDR sum-of-boxes, predicts (or
correlates with) future cognitive decline on the same measures.
Furthermore, the ApoE4 gene and increasing age are risk factors for
developing AD, so that in any sufficiently large group of controls, MCI,
or AD subjects, the ApoE4 gene (and age) will also correlate with
future cognitive decline. So, although it is of interest that increased
ventricular volume alone predicts cognitive decline, it must also be
conceded that identifying covariates in an atlas has little utility if there
is no method to take them into account. In our initial efforts fitting
multiple predictors to maps of hippocampal and caudate atrophy
(Apostolova et al., submitted for publication (a),b; Schuff et al., 2009),
we found that very large samples are needed to detect to what extent
imaging measures predict future cognitive decline after baseline
cognition, ApoE4 status, age (and potentially other clinical covariates)
are taken into account. The stable fitting of multiple predictors with
small effects is difficult unless the sample is very large. Once the full
ADNI sample has been collected, we plan to set up a general linear
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model with multiple predictors including baseline cognition, age, and
ApoE4 status. From this, we will be able to test the hypothesis that any
proposed imaging measures (such as ventricular maps) have an
additional value for predicting cognitive decline beyond those
measures obtainable without imaging.

As noted in Weiner (2008), ventricular expansion correlates more
strongly with changes on cognitive tests than medial temporal lobe
(MTL) atrophy rates (Jack et al., 2004). Abnormally fast ventricular
dilation over time has also been linked to the accumulation of AD
pathological markers such as cortical neurofibrillary tangles and
amyloid plaques (Silbert et al., 2003), and to rates of cognitive decline
in AD patients and controls (Adak et al., 2004). Ventricular changes
reflect atrophy in surrounding structures (Powell et al., 1991),
providing somewhat indirect assessments of tissue reduction, that
correlate with cognitive deterioration. Some studies suggest that
ventricular enlargement is quite highly correlated with gray matter
atrophy but not with white matter hyperintensities (Hsu et al., 2002).
In 62 AD patients (24 with lacunar infarcts in the subcortical white
matter and 38 without), Hsu et al. (2002) found that ventricular CSF
volume correlated inversely with cortical GM volume (r=0.35) but
not with total WM volume. Contrary to ventricular CSF, sulcal CSF
correlated inversely with cortical GM (r=0.47) and with total WM
(r=0.75) in AD patients. No significant correlation was found
between the volume of white matter hyperintensities and ventricular
or sulcal CSF. Even if ventricular expansion is just an indirect reflection
of diffuse gray matter atrophy that could be measured more directly,
there may be circumstances where ventricular volumes are easier or
more reproducible tomeasure than gray orwhitematter changes. First,
accurate cortical gray matter segmentation requires a 3D MRI
sequence with sufficient gray/white matter contrast and spatial
resolution to resolve the cortical mantle. Scans used clinically or in
neuroscience research do not always provide superior gray/white
matter differentiation in many cortical regions, either due to partial
volume effects, susceptibility artifacts, SNR fall-offs near the brain
parenchyma, radio-frequency bias field effects, and confounding
effects of meninges, whose signal resembles that of gray matter on
T1-weighted scans. By contrast, ventricular segmentation is relatively
easy even in low resolution scans, as the ventricular CSF has high
contrast relative to surrounding tissues.Whether or not the ventricular
measures are more useful than gray and white matter quantitation for
diagnostic accuracy or for clinical trials depends on the expected effect
sizes, the cost of acquiring scans with sufficient contrast for accurate
GM/WM differentiation, and the ability to performing reproducible
GM/WM segmentation across scanners and across time.

It may seem more natural to focus on segmenting the inferior
horns of the lateral ventricles, given their proximity to the graymatter
structures of the medial temporal lobe, which are susceptible to early
atrophy in AD. Unfortunately, our deformation-based segmentation
method is not optimal for mapping the inferior horns of the ventricles,
since healthy subjects typically have very low CSF volumes of in the
inferior horns, and their geometry appears narrow on coronally-
resliced MRI (typically a millimeter or less in width). Fortunately, the
other ventricular horns do show very high effect sizes for disease and
genetic effects, partly because the error in segmenting them is much
less as a proportion of their overall volume, and the expected percent
volume difference in disease is extremely large. In theory, an inferior
horn template could be propagated into new scans using a fluid
registration approach, but it would be hard to propagate accurately
onto controls in regions with very limited CSF, as large localized
contractions (i.e., compressions of the template) would be needed.
The fluid prior in the registration enforces a spatial smoothness in the
deformation that limits very large localized compressions.

Some comparison with the maximally discriminative regions in
other studies is warranted. In the largest ventricular mapping study
to date (Carmichael et al., 2006; N=339), we applied a single-atlas
segmentation approach to data from an independent sample of 40
AD, 74 MCI and 225 control subjects, drawn from the Cardiovascular
Health Study (CHS). In that study, we were not able to examine the
effects of the many covariates studies here (e.g., education,
depression, ApoE status, and tau pathology in the CSF). Instead we
focused on defining the location of maximal differences between AD,
MCI and control groups, using pairwise contrasts between groups to
create statistical maps of radial ventricular expansion. As observed
here, contrasts between normal and demented subjects showed
dramatic ventricular atrophy throughout the lateral ventricles,
especially along the frontal and temporal horns, but essentially all
regions of the lateral ventricles provided discriminative power. This
is in line with the known neurobiology of AD, in which all lobes are
somewhat affected by atrophy; this atrophy allows the CSF spaces to
expand in all ventricular horns. In Carmichael et al. (2006) and in our
current study, the MCI group showed prominent expansion relative
to controls along the lateral boundaries of the frontal horns near
their posterior limit, but the AD group showed expansions relative to
MCI subjects along the superior and lateral surfaces of the frontal
horns, adjacent to the head of the caudate nucleus. In our current
study, consistent with our maps in Carmichael et al. (2006), the main
MCI-normal differences were found not in the anterior regions of the
frontal horns, but in the more posterior regions, around the junction
with the occipital horns (a region sometimes called the atrium or
trigone of the lateral ventricles, because it is the “3-sided” region
where all 3 horns join). If the trigone of the ventricles is sensitive to
MCI, then both the current study and that of Carmichael et al. (2006)
suggest that the maximally discriminative region is much more
restricted than the region that differs between AD and controls. This
is also plausible anatomically, because extensive atrophy of the
caudate head–which contributes to expansion in the anterior
portion of the frontal horn–is not typically found in MCI, and
although it is found in late AD, it is more typical of Parkinsonian-type
dementias (Apostolova et al., 2008). If there is truly an anatomical
sequence in which the discriminative region of the ventricles
expands forwards along the frontal horn as AD progresses, then it
makes sense for future studies to more heavily weight or focus on
specific subregions of interest for detecting discriminative changes
in the ventricles (see Ferrarini et al. 2008a,b). The use of statistically
based regions of interest from prior independent studies is likely to
empower future population studies by emphasizing regions where
effect sizes are expected to be the greatest.

Ferrarini et al. (2008a) also used a shape modeling method based
on “Growing and Adaptive Meshes” (GAMEs) and Support Vector
Machines (SVM) to discriminate and classify 58 AD subjects and 28
age-matched healthy elderly controls. In their study, the left inferior
medial temporal horn, the right (superior and inferior) medial
temporal horn, and areas close to the genu of the left side of the
corpus callosum and the head of the right caudate nucleus showed a
consistent pattern of features that helped to discriminate AD patients
from controls. Ferrarini et al. (2008a,b) went on to identify the
maximally discriminative region on the ventricles for distinguishing
AD from controls, by thresholding the statistical maps. By entering the
3D displacement values at these points into a support vector machine
classifier, they correctly classified 76% of a group of unseen AD
patients. The more stringent the thresholding of the maps (i.e., the
smaller the region of interest), the more accurately they were able to
classify the patients from controls. This further motivates the focus on
localized regions with greatest effects in statistical maps.

In conclusion, brain mappingmethods are now being evaluated for
tracking AD in terms of statistical power, predictive validity, and
automation. Ventricularmeasures showa relatively high effect sizes in
distinguishing disease from normality. The FDR curve ranking method
adopted here, while not the only method to evaluate effects in
statistical maps, is an attractive approach for algorithm developers to
compare the power of different map-based methods head-to-head, in
an effort to further reduce the minimal sample sizes.
www.manaraa.com
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